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Abstract – The estimation of sonar system performance 
in uncertain environments requires the transfer of  
sound speed, bathymetric and sea surface uncertainty to 
propagation uncertainty.  Currently, methods of 
estimating the transfer of environmental uncertainty 
have been based on Monte Carlo simulation of acoustic 
propagation through an ensemble of environments, or 
on simplifying assumptions about the physics of 
propagation either through inhomogeneous media or in 
the presence of non-separable boundary conditions.  In 
this paper we introduce the Polynomial Chaos 
expansion method, which allows the integration of the 
differential equations of acoustic propagation over a 
basis expansion that is orthogonal with respect to the 
probability distribution function describing the 
environmental variability. The resulting solution 
converges in a relatively small number of expansion 
coefficients and may be used to estimate any statistical 
property of the acoustic field, such as its mean value 
and its variance.  
 
Keywords: Uncertainty, acoustic propagation, internal 
waves, Polynomial Chaos. 
 

1 Introduction 
 
The transfer of environmental uncertainty into 
performance prediction uncertainty in sonar performance 
modeling requires that the effect of the environmental 
uncertainty on acoustic propagation be estimated.  This is 
usually undertaken through a modeling exercise where 
models possessing various degrees of fidelity are 
exercised over a broad range of environmental variability 
drawn either from environmental measurements obtained 
during at-sea experiments or through some objective 
analysis of environmental databases.  In all cases, the goal 
of the exercise is to increase the robustness of 
performance prediction for systems that will operate in 
the presence of the inevitable environmental uncertainty 
associated with the oceans. 
 
The execution of Monte Carlo runs of acoustic models 
over environmental ensembles is certainly a viable 
approach for estimating uncertainty transfer for sonar 
systems.  However, it is usually difficult to learn much 
about why the acoustic variability occurs, where it occurs 

in the field, and why and how the variability deviates 
from predictions made with simplified models of 
variability transfer.   There is also a relative lack of 
information about how the statistical distributions of the 
environmental variability translate into the distributional 
properties of the acoustic response.   
 
In this paper we adopt an alternative method to describe 
the transfer of environmental uncertainty to acoustic 
uncertainty.  We adopt the method of Polynomial Chaos 
expansions, introduced into underwater acoustics by 
Finette[1], whereby the acoustic field is expanded in a 
basis which is orthogonal under the probability 
distribution functions of the environmental variability.  
As with any appropriate basis expansion of a solution, the 
daunting task of solving a high dimension problem is 
reduced to solving a tractable lower dimension problem.  
In the approach proposed here, the lower dimension 
problem is also closely analogous to a simplified model 
of propagation through uncertainty widely used in 
underwater acoustics: adiabatic normal mode theory.  We 
solve the differential equations for coupled mode 
propagation in an inhomogeneous environment with a 
polynomial chaos expansion used not for the complex 
modal amplitudes but rather for their natural log.  As will 
be seen, this approach is the natural one for capturing the 
probability distribution of the phase aberrations caused by 
environmental variability and is useful for capturing the 
effects of mode coupling as well. 

2 Theory 
 
The one-way coupled mode equations for propagation in 
range-dependent media are [2] 
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where an are the range dependent complex modal 
amplitudes, φn are the range and depth dependent normal 
mode shape functions, ρ is the range and depth dependent 
density profile and kn are the range dependent modal 
wavenumbers.  In the absence of mode coupling (1) has 
the well-known adiabatic solution [3] 
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In this paper we restrict our treatment to uncertainty 
introduced by sound speed defects in the water column, 
such as would be introduced by internal wave activity [4].  
The sound speed defects of the waveguide may be 
expanded in an empirical orthogonal function (EOF) basis 
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 We seek simple expressions of the intermodal coupling 
matrix /mn m nA dzφ φ ρ= ∫  and the deviations of the 

modal wavenumber  that are caused by the individual 
EOFs.  For the decomposition in (3), we can adopt a 
perturbative treatment for the mode coupling and the 
aberrations to the horizontal wavenumber caused by each 
EOF [5]  
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Equation (1) may then be written as 
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where . ( )expn n na a ik x= −
 
2.1 Polynomial Chaos expansion of  na
 
The polynomial chaos (PC) basis expansion technique, 
based on the theory of Cameron and Martin [6], is in its 
simplest form a way of expanding a solution to a 
differential equation in a basis orthogonal under a weight 
function which is the probability density function (pdf) of 
the uncertain environmental parameters.  For 
environmental uncertainties which are distributed 
according to a Gaussian pdf, the appropriate basis are the 
modified Hermite polynomials Γ [6] which obey the 
relation 
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For clarity the first four modified Hermite polynomials 
He are shown below.  Note that they are explicit functions 
of the Gaussian distributed random variable ξ  
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In the following we assume that range dependent 
coefficient ηl  of the lth EOF conforms to a Gaussian 
distribution 
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We have many choices as to how we expand in a 
modified Hermite basis.   The most obvious expansion 
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is dissatisfying because even for adiabatic propagation the 
solution would be slowly converging 
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This is because for adiabatic propagation Gaussian 
distributed sound speed aberrations would cause Gaussian 
distributed phase aberrations to .  The expansion (9) 
would therefore attempt to build up a log-normal 
distribution from a product of modified Hermite 
polynomials whose coefficients were distributed 
Gaussian; inefficient at best, and very likely slowly 
converging.   

na

 
Motivated by the fact that under the adiabatic 
approximation would be distributed log normal, a 
more efficient representation is to expand the natural 
logarithm of in a polynomial chaos basis 

na

na
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In what follows the utility of this choice seems to be 
borne out by rapid convergence of the PC expansion. 
 
2.2 Polynomial Chaos solution for  na
 
Inserting (11) into (5) we obtain 
 



( ) ( )

( )
( )

( ) ( ) ( ) ( )
1

0
exp

0

PC

o
m PC PC

o
n

N
jn l

j n l l
j

ik x N NN
m l l

km k jm j mn lik x
m k jn

d
He i k x

dx

a e dx He x He A
dxa e

ξ ση ξ

ηξ ξ σ ξ
=

Θ
= ∆

⎛ ⎞
− Θ − Θ⎜ ⎟

⎝ ⎠

∑

∑ ∑ ∑

.  (12) 

 
Equation (12) may be solved for small arguments to the 
exponential on the second line.  This « small argument » 
solution is 
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Notice the form of (13).  In the absence of mode coupling 
the second and third terms on the RHS are zero, and the 
resulting solution for Θ1 is simply  
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Equation (14) yields the desired log normal form for the 
modal amplitude envelope 
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where 
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Note that in the absence of mode coupling the higher 
order expansion terms Θn , n=2…. , are all identically 
zero.  In the presence of modal coupling, these higher 
order terms are expected to have finite amplitude.  In 
addition, all terms are expected be complex instead of 
purely imaginary, with the real part representing the 
effects of amplitude fluctuations.  In these cases, (12) 
must be numerically integrated for a specific form of 

∞

lη  
in order to obtain a solution. 

3 Example 
 
Consider 500 Hz acoustic propagation through an internal 
wave field causing sound speed aberrations conforming 
to the realization shown in figure 1.  The EOFs 
corresponding to this realization are shown in figure 2, 
and the corresponding energy and correlation length 
scales are shown in figures 3 and 4. 

 
Figure 1 : Sound speed fluctuations caused by  

internal waves 

 
Figure 2 : EOF mode shapes for sound speed 

defects illustrated in figure 1 
 

 
Figure 3 : Energy as a function of EOF 

 

 
Figure 4 : Horizontal correlation length scale as 

a function of EOF 
 

Here we evaluate the statistics of the field caused by 
variability conforming to the most energetic EOF (EOF 
1).  For the range dependent EOF amplitude 1η  we 
choose the form 



 ,                                                       (17) (1 sin /r lη = )1

where the horizontal correlation length  is set to 3.5 km 
consistent with figure 4. 

1l

 
Equation (13) is integrated using the 1

nk∆  and 

derived for the first EOF mode shape shown in 

figure 2, and using the above definition of 

1
mnA

1η .  The PC 
expansion is truncated at four terms.  The results are 
shown in figures 5 through 9.  Figure 5 shows the 
imaginary part of the PC coefficients as a function of 
range and mode number.  The range and mode 
dependence of the imaginary part of the first PC 
coefficient is very similar to the result which would be 
obtained with the adiabatic approximation, while the 
second and higher order terms are seen to decay rapidly 
with PC order, with the fourth expansion term being 
approximately 5 orders of magnitude less energetic than 
the first expansion term.  Note that  the structure of the 
higher order terms is more closely identified with modal 
coupling than it is with the nearly adiabatic accumulation 
of phase demonstrated by the first coefficient.

 
Figure 5 : Imaginary part of first 4 PC coefficients for 

the most energetic EOF (EOF 1) 
 
Some indication of the non-adiabaticity of the 
propagation through the first EOF is seen by inspection of 
the real part of the PC expansion coefficients, shown on a 
log scale in figure 6.  The first expansion coefficient has a 
non-negligible real amplitude associated with modal 
coupling, with a maximum magnitude of approximately 
10-1.  The real part of the higher order expansion 
coefficients is negligible, the conclusion being that for the 
first EOF, the propagation statistics of both the real and 
the imaginary part of the complex modal coefficients are 
essentially log-normal. 
 

 
Figure 6 : Real part of first 4 PC coefficients for  

EOF 1 
 

In figures 7 and 8 we compare the agreement between PC 
estimates of the phase and log-amplitude standard 
deviation of propagation through EOF 1 and the Monte 
Carlo estimates.  These figures show that the phase and 
log-amplitude standard deviation agreement between the 
two methods is quite good, giving confidence in the 
correctness of the PC method.  Note that the PC results 
were obtained in a time 20 times longer than individual 
Monte Carlo calculations, of which 200 were required to 
obtain the results shown. 

 
Figure 7: Comparison between PC estimate of EOF 1 

phase standard deviation (top) and MC estimate (bottom) 

 
Figure 8 : Comparison between PC estimate of EOF 1 log 

amplitude standard deviation (top) and MC estimate  



 
Figure 9 : Comparison between 10log10 of the PC estimate o
the EOF 1 scintillation index (middle) and the MC estimate

(bottom).  Top figure unperturbed transmission loss at 500 H

f 
 
z  

 
Finally in figure 9 10log10 of the second moment of the 
coherent pressure field intensity in the presence of EOF 1 
is plotted normalized by the unperturbed transmission 
loss (shown in the top panel) in the second panel for the 
Monte Carlo estimate and in the third panel for the PC 
expansion.  The normalized variance is highest in the 
deep nulls associated with the unperturbed results: this is 
consistent with the fact that the deep nulls are associated 
with perfect destructive interference which is 
unpredictable in the presence of EOF 1.  The largest 
variances in the PC solution are found at ranges between 
4 and 18 km, this is due to the nature of the form of 1η  
chosen in (16), which reaches its maximum argument at 
ranges of  where as mentioned before 

l=3.5 km.  
( 1/ 2r nπ= + ) l

4 Conclusions 
 
A Polynomial Chaos expansion for the complex modal 
amplitudes of coupled acoustic normal modes 
propagating through internal wave activity has been 
derived and implemented.  Results show that expressions 
for the standard deviation of the modal phase and log-
amplitude obtained by integrating the PC equations agree 
very closely with estimates of these quantities estimated 
by Monte Carlo methods.  The PC expansion chosen was 
also shown to be very rapidly converging in the number 
of expansion terms required.  The speed of the PC 
calculations was roughly 10 times faster than the Monte 
Carlo estimate method, and the number of required 
expansion terms gave a degree of insight into the 
importance of the non-linear transfer of uncertainty 
associated with acoustic propagation through internal 
waves, since the existence of orders higher than 1 
indicates non-log-normal propagation statistics.  It is 
hoped that the Polynomial Chaos method will continue to 
provide a fruitful avenue of research into the non-linear 
transfer of environmental uncertainty into acoustic 
propagation uncertainty, that tools based on this theory 
can be developed for the rapid and robust estimation of 
uncertainty parameters required for operation research 
purposes, and that the method can be expanded to treat 

problems of time domain propagation, including 
scattering and reverberation, in an analogous manner to 
that outlined here. 
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